
Simplifying Streaming
Algorithms

Matthew Builes 1 3 Konstantinos Mamouras, 2

Lawrence E. Elkins High School, Missouri City, TX
Rice University, Houston, TX

Gifted and Talented Mentorship Program, Fort Bend ISD

1

2

3

Introduction

Methodology

Results

Next Steps

The Internet of Things (IoT) refers to the network of
physical devices that interact with their environment

through sensors and can communicate and exchange data
with other devices. These devices are seeing many new

applications, including wearable devices, smart buildings,
and healthcare technology. Their ability to collect and

transmit information about the physical world and make
real-time decisions makes them invaluable, but they

suffer from many of the same pitfalls. Many IoT devices
are small sensors that are constrained by processing

power, storage capabilities, and energy consumption.
Additionally, these devices receive continuous input,

meaning any computations performed must be in the form
of a streaming algorithm. Unlike regular algorithms that

have access to all of the data required, streaming
algorithms process data sequentially, and due to the

theoretically infinite size of the input stream, must be
extremely fast and take up low storage. This puts pressure

on the programmer to work within these constraints.

To simplify the work of the IoT programmer, I endeavored
to create a domain specific language for creating

streaming algorithms. Unlike general programming
languages like Python or Java that can be used for a wide
variety of tasks, domain specific languages are created to

give users the tools for one kind of task. The domain
specific language I created simplifies the creation of

streaming algorithms for IoT programming through query
blocks. A query block is an object that takes in an input,

performs a transformation, and gives an output. The
language provides basic functions as query blocks, such as
common operations performed over a sliding window, and
allows the user to define more specific query blocks based
on their needs. Most importantly, the language allows the

user to string together the output of one query into the
input of another and even run two queries in parallel using

the same input. This allows for complex algorithms to be
created by building on simple query blocks.

To provide examples for the use of the domain specific
language, I created two algorithms: a data compression

algorithm and a heart rate monitor. The data compression
algorithm was built with six query blocks: three for

compression, and three for decompression. The compression
was achieved by reducing the range of the data and packing
the information of multiple numbers together in a way that

could still be read and reversed by the decompression
algorithm. When tested on Electrocardiogram (ECG) data

from the MIT-BIH database, the algorithm achieved over 50%
lossless compression. The heart rate detection algorithm,

also tested on the MIT-BIH database, worked by applying the
curve length function over a sliding window of time to find

the highest peaks in the data. These peaks were classified as
heart beats, and the average time between these beats was

outputted, allowing for the calculation of the heart rate.
Notably, both of these algorithms ran extremely quickly and
used low amounts of memory, which would translate to high
energy efficiency in real world applications, like on a smart

watch with limited battery life.

Currently, the domain specific language is implemented
inside of Rust, a low level programming language that

allows for fast computations and memory safety
guarantees. In the future, though, creating a compiler
that translates the domain specific algorithm’s code

directly into machine code would make the algorithms
run even faster. Additionally, the functionalities of the
language would need to be expanded to allow for more

use cases. Currently, the language is capable of handling
one input stream at a time, but other, more complex

systems might need to receive various input streams at
the same time from different devices, and the

information from these streams might not be received
at the same rate. The domain specific language will need

to include the flexibility to handle these use cases to
further simplify programming for users.

